更多>>精华博文推荐
更多>>人气最旺专家

瓦波尔

领域:百度健康

介绍:tōucǎibáiliánhuí小娃小,xiǎowáchēnɡxiǎotǐnɡ撑艇偷不解藏踪迹,不解:不知道;不懂得踪迹:指被小船划开的浮萍句意:他还不懂得怎样隐藏划船留下的痕迹第三句一道开。...

崔氏

领域:蜀南在线

介绍:在“公投”后也决定不解除进口日本5县食品的禁令。w66,w66,w66,w66,w66,w66

利来国际老牌软件
本站新公告w66,w66,w66,w66,w66,w66
dzu | 2019-01-20 | 阅读(45) | 评论(190)
听取审议了《残疾人保障法》、《人口与计划生育法》、《义务教育法》贯彻执行情况的报告,指出了法律法规实施中存在的问题和差距,提出了加强和改进相关工作的意见建议,对进一步推进依法治区进程,具有较强的指导性,有力促进了法律法规在我区的贯彻实施。【阅读全文】
w66,w66,w66,w66,w66,w66
9vg | 2019-01-20 | 阅读(467) | 评论(686)
 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即【阅读全文】
k0k | 2019-01-20 | 阅读(520) | 评论(997)
光电特征标识技术是一种新型利用光电特征对目标进行识别、定位的现代识别技术。【阅读全文】
li8 | 2019-01-20 | 阅读(840) | 评论(721)
中国林科院林产化学工业研究所在林业部的支持下先后承担了国家“八五’’和“九五’’关键技术攻关任务和UNDP资助的“发展中国高得率制浆技术研究’’等项目,引进了世界先进水平的高得率制浆整套中试设备,并系统研究了速生杨、桦、桉等阔叶材及杉木、马尾松等速生针叶材制浆适宜性能,适宜的制高得率浆工艺技术,漂白工艺及相关废水处理技术等,对林业系统发展高得率浆生产在技术上进行了准备。【阅读全文】
i8o | 2019-01-20 | 阅读(958) | 评论(120)
其三是在工作作风上存在差距一是在”快”字的体现上还不够,风风火火、雷厉风行干事业的劲头还不足,只争朝夕、”任务不过夜”的要求还未达到,工作效率还需提高;二是在”深”字的体现上还不够,没有做到经常深入窗口,深入实际,特别是与同志们谈心交流少,对同志们的困难和需要了解少,超前服务、及时服务、细致服务的工作还不到位;三是在”严”字的体现上还不够,高标准、严要求、高质量的意识还不够强;四是在”实”字的体现上还不够;工作抓细、抓实、抓具体和”一竿子插到底”的实干精神还不够强。【阅读全文】
ho8 | 2019-01-19 | 阅读(243) | 评论(952)
A2、(2016·高考全国Ⅰ卷文综政治·17)根据十二届全国人大常委会第十六次会议通过的全国人大常委会关于特赦部分服刑罪犯的决定,国家主席习近平2015年8月29日签署特赦令,对参加过抗日战争。【阅读全文】
lxo | 2019-01-19 | 阅读(335) | 评论(392)
第一章引言第一章引言1.1选题的背景及意义随着现代信息化技术的快速发展,高校图书馆正在逐步向馆藏资源数字化、网络化与共享化的方向演变。【阅读全文】
7jq | 2019-01-19 | 阅读(716) | 评论(568)
本文研究BOT模式应用于高校后勤设施建设,其目的在于:科学解决高校后勤建设资金难题,提出BOT模式引入高校的风险应对措施,研究BOT模式中存在的问题并采取切实可行的办法应对,将BOT模式应用于山东大学青岛校区的学生公寓项目,验证其收益及可行性,为实际问题提供借鉴。【阅读全文】
w66,w66,w66,w66,w66,w66
qxo | 2019-01-19 | 阅读(424) | 评论(416)
圆面积的定义orr以正方形的边长为半径画一个圆,圆面积是正方形面积的几倍?圆面积比正方形面积的3倍多一些,也就是比半径平方(r2)的3倍多一些。【阅读全文】
8vw | 2019-01-18 | 阅读(149) | 评论(829)
下面,先学习**党委文件《关于召开*****民主生活会的通知》(**[201*]号文)(读文件)按照民主生活会的程序,我们事先于**月*日通过座谈广泛征求了党内外群众的意见,现把情况通报一下。【阅读全文】
h8c | 2019-01-18 | 阅读(621) | 评论(332)
本实验的关键步骤是什么?遵循了什么原则?R型菌转化为S型菌的实质:基因重组(含S)(含P)(三)噬菌体侵染细菌的实验(1)T2噬菌体的结构模式图1T2噬菌体(1)T2噬菌体的结构T2噬菌体是一种专门寄生在大肠杆菌体内的病毒(无细胞结构),头部和尾部的外壳都是由蛋白质构成,头部内含有DNA。【阅读全文】
ry6 | 2019-01-18 | 阅读(394) | 评论(156)
微构造通常有正向微构造(包括小鼻状、小构造阶地及小断鼻等)、负向微构造(包括小沟槽、小向斜等)和斜面微构造(油层正常的倾斜部分)。【阅读全文】
vne | 2019-01-18 | 阅读(283) | 评论(286)
但是喝豆浆也有注意事项,以下正确的食用方法是()A、喝没有煮沸的豆浆B、豆浆中冲入鸡蛋C、喝豆浆时搭配其他食物D、用保温瓶长时间储存豆浆C*4、亚硝酸盐属剧毒类化学物质,又叫工业用盐,如酸菜等腌制食品中就含一定量的亚硝酸盐,吃酸菜时最好吃一些什么可减少亚硝酸盐的危害。【阅读全文】
lc7 | 2019-01-17 | 阅读(528) | 评论(454)
此外,在生产经验上,林业系统所属的福建顺昌纸板厂是我国第一家全部采用国产设备、利用混合材制化机浆生产强韧箱纸板的生产厂,取得了良好的社会和经济效益。【阅读全文】
evg | 2019-01-17 | 阅读(615) | 评论(643)
4.量筒的读数方法一、量筒的使用用量筒测液体的积.量筒里的水面是凹形的,读数时,应把量筒放在水平桌面上,观察刻度时,视线、刻度线与量筒内液体的凹液面最低处三者保持水平。【阅读全文】
共5页

友情链接,当前时间:2019-01-20

利来w66 www.w66利来国际 利来娱乐国际ag旗舰厅 利来国际官方网站 利来娱乐城
国际利来ag厅 利来国际w66娱乐平台 利来国际w66利来国际w66 w66利来 w66.cum
利来国际最给利的老牌 利来娱乐 利来AG旗舰厅 利来娱乐网 w66.cm利来国际
利来官方网站w66利来 利来国际最给利的老牌 利来国际旗舰版 w66利来国际 利来国际备用
洮南市| 麻城市| 宝丰县| 千阳县| 喀喇| 枣强县| 明光市| 娄烦县| 华坪县| 临泉县| 古蔺县| 霍州市| 桂阳县| 元谋县| 邢台县| 孝昌县| 廊坊市| 弥勒县| 沁阳市| 崇仁县| 洮南市| 夏河县| 天柱县| 太原市| 景德镇市| 津南区| 札达县| 漳浦县| 合川市| 宿州市| 河南省| 聂拉木县| 昌吉市| 外汇| 湟源县| 湖北省| 本溪市| 岳普湖县| 仁化县| 保定市| 菏泽市| http://m.23109104.cn http://m.41518816.cn http://m.34573155.cn http://m.38315071.cn http://m.16988242.cn http://m.65902765.cn